Convex projective Gromov–Thurston examples
نویسنده
چکیده
We consider Gromov–Thurston examples of negatively curved nmanifolds which do not admit metrics of constant sectional curvature. We show that for each n ≥ 4 some of the Gromov–Thurston manifolds admit strictly convex real–projective structures.
منابع مشابه
Convex projective structures on Gromov–Thurston manifolds
Gromov and Thurston in [10] constructed, for each n 4, examples of compact n– manifolds which admit metrics of negative curvature, with arbitrarily small pinching constants, but do not admit metrics of constant curvature. We review these examples in Section 3. The main goal of this paper is to put convex projective structures on Gromov– Thurston examples. Suppose that RP is an open subset and...
متن کاملThe Thurston Boundary of Teichmüller Space and Complex of Curves
Let S be a closed orientable surface with genus g ≥ 2. For a sequence σi in the Teichmüller space of S, which converges to a projective measured lamination [λ] in the Thurston boundary, we obtain a relation between λ and the geometric limit of pants decompositions whose lengths are uniformly bounded by a Bers constant L. We also show that this bounded pants decomposition is related to the Gromo...
متن کاملReal Aspects of the Moduli Space of Genus Zero Stable Maps and Real Version of the Gromov-witten Theory
We show that the moduli space of genus zero stable maps is a real projective variety if the target space is a smooth convex real projective variety. We introduce the real version of the Gromov-Witten theory proposed by Gang Tian.
متن کاملm at h . A G ] 8 A pr 1 99 8 Gromov - Witten invariants of blow - ups
In the first part of the paper, we give an explicit algorithm to compute the (genus zero) Gromov-Witten invariants of blow-ups of an arbitrary convex projective variety in some points if one knows the Gromov-Witten invariants of the original variety. In the second part, we specialize to blow-ups of Pr and show that many invariants of these blow-ups can be interpreted as numbers of rational curv...
متن کامل. A G ] 2 4 A pr 1 99 8 Gromov - Witten invariants of blow - ups
In the first part of the paper, we give an explicit algorithm to compute the (genus zero) Gromov-Witten invariants of blow-ups of an arbitrary convex projective variety in some points if one knows the Gromov-Witten invariants of the original variety. In the second part, we specialize to blow-ups of Pr and show that many invariants of these blow-ups can be interpreted as numbers of rational curv...
متن کامل